

Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka and Accredited by NBA (AE, BT, CSE, ECE, ME, MT)

DEPARTMENT OF MECHATRONICS

2022 SCHEME

Course Name	Course Code	CO. No.	Course Outcomes
		CO1	Determine stresses and strains in simple and composite bars subjected to uni-axial loads as well as elastic constants in them
MECHANICS		CO2	Determine stresses on inclined planes in an elastic body subjected to bi-axial loading, using analytical and graphical methods
OF SOLID AND FLUIDS -	BMT301	CO3	Compute the torque/power transmission capability of solid and hollow shafts, the buckling load for safe design of columns with different end conditions
		CO4	Explain different types and properties of fluids, aspects of pressure measurement and fluid statics
		CO5	Compute the mass flow rate, velocity and acceleration at any point, forces and energy in the fluid flow
		CO1	Explain the operation and the Design of Op-amp Active Filters.
	BMT302	CO2	Elucidate the Working Principle and Design of Oscillators and Comparators.
ANALOG		CO3	Explain the Working Principle and Design of 555 timers and Its applications.
AND DIGITAL ELECTRONIC		CO4	Describe the operation and Design of Combinational Logic circuits.
S -		CO5	Summarize the Working Principle and Learn the Design of Sequential Logic circuits
		CO6	Develop clippers, clampers, amplifiers, 555 timers circuits for the design specifications.
		CO7	Develop and verify the truth table operation of combinational and sequential circuit.
	BMT303	CO1	Gain knowledge of basic material structure, mechanical properties and behaviour of engineering materials under the action of load.
MATERIAL SCIENCE AND MANUFACTU		CO2	Explain different types and processing methods of composite materials, and the properties and application of Smart materials
RING TECHNOLOG		CO3	Gain knowledge in conventional manufacturing techniques and casting process
Y -		CO4	Explain the principles of common and special welding processes
		CO5	Gain knowledge of metal cutting principles, metal cunning tools and operations.

Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka and Accredited by NBA (AE, BT, CSE, ECE, ME, MT)

		CO6	Determine the mechanical properties of given materials and visualize the micro structure of the specimen
		CO7	Prepare/ develop a physical model by performing different machining operations
		CO1	Explain the basic structure of computers, machine instructions and programs
COMPUTER ORGANIZATI		CO2	Illustrate the different types of addressing modes and assembly language
ON AND	BMT304	CO3	Summarize the different of I/O devices and interrupts
ARCHITECTU RE -		CO4	Illustrate the organization of different types of semiconductor and other secondary storage memories
		CO5	Demonstrate the simple processor organization based on hardwired controller and micro program control
COMPUTER AIDED	BMT305	CO1	Illustrate various machine components through drawings
MACHINE DRAWING -	DIVI I 303	CO2	Create assembly drawings as per the conventions
		CO1	Explain the fundamentals of signals and its properties.
	BMT306B	CO2	Solve the time representation of LTI systems for various signal operations.
SIGNAL & SYSTEMS -		CO3	Utilize the various signal properties for time representation of LTI Systems.
		CO4	Identify the Fourier Series representation of signals and its properties.
		CO5	Apply Fourier transform for signal representation
		CO1	Classify the types of Robots
	BMT358D	CO2	Illustrate the anatomy and components of the robot systems.
ROBOTICS ECOSYSTEM -		CO3	Explain the functions of end effectors and drive systems in robots
		CO4	Describe the different types and functions of sensors in robotics
		CO5	Elucidate the industrial applications of robots.
		CO1	Describe the architecture of 8051 Microcontroller and memory organization
MICROCONT		CO2	Summarize different addressing modes, Assembly and C instruction set
ROLLER AND APPLICATION S -	BMT401	CO3	Model assembly and C language program for software and hardware applications.
		CO4	Write a program to verify various operation on data transmission
		CO5	Create hardware interface between microcontroller and peripheral units
ELECTRICAL DRIVES AND	BMT402	CO1	Describe the basic concept of Electric drives and Speed- torque conventions.

CONTROLS -		CO2	Explain the modes of operations of drives and thermal
			model of motor for heating and cooling.
		CO3	Outline the starting and braking control methods for DC drives.
		CO4	Summarize the starting and braking control methods for AC drives.
		CO5	Explain the microprocessor-based control of electrical drives.
		CO6	Perform DC motor drives to determine control characteristics of DC motors.
		CO7	Perform AC motor drives to determine control characteristics of AC motors.
		CO1	Describe Various components of Hydraulic Circuits and working of various sources of hydraulic power
		CO2	Demonstrate the working of hydraulic actuators and control components
HYDRAULICS		CO3	Illustrate the concepts on hydraulic circuit design and maintenance.
AND PNEUMATICS	BMT403	CO4	Describe pneumatic system components and its operations.
-		CO5	Illustrate the use of electronics components in hydraulic and pneumatic systems.
		CO6	Build the pneumatic/Hydraulic circuits using pneumatic/ hydraulic trainer kit.
		CO7	Simulate pneumatic/hydraulic circuits using virtual platforms.
MECHATRON ICS		CO1	Calibrate the sensors LVDT, load cell and Thermo couple
LABORATOR Y -	BMT404	CO2	Develop a various ALU applications using Assembly Language and design an interface between 8051 and external peripherals for real time applications
		CO1	Illustrate the architecture, revolution of Industrial IoT System
		CO2	Outline the various of Sensors and Actuators used in Industrial IoT
INDUSTRIAL IoT -	BMT405B	CO3	Contrast among the various technologies used in IIOT
101 -	-	CO4	Explain the different communication protocols used in IIOT applications
		CO5	Describe the various Case Studies of Industrial applications with IoT capability
CNC PROGRAMMI		CO1	To describe the basic components of CNC machines and its operations
		CO2	To create CNC program and simulate different machining operations.

Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka and Accredited by NBA (AE, BT, CSE, ECE, ME, MT)

2021 SCHEME

Course Name	Course Code	CO. No.	Course Outcomes
		CO1	To solve ordinary differential equations using Laplace transform.
TRANSFORM CALCULUS,		CO2	Demonstrate the Fourier series to study the behavior of periodic functions and their applications in system communications, digital signal processing and field theory.
FOURIER SERIES AND NUMERICAL	21MAT31	CO3	To use Fourier transforms to analyze problems involving continuous-time signals and to apply Z- Transform techniques to solve difference equations
TECHNIQUES -		CO4	To solve mathematical models represented by initial or boundary value problems involving partial differential equations
		CO5	Determine the extremals of functionals using calculus of variations and solve problems arising in dynamics rigid bodies and vibrational analysis.
	21MT32	CO1	Understand the working principle of Analog & Digital Electronic Circuits
		CO2	Understand the characteristics & response of Analog & Digital Electronic Circuits
ANALOG AND DIGITAL		CO3	Formulate the relations for Voltage Gain, Frequency of Various Analog Electronic Circuits & Boolean Expressions for Digital Electronic Circuits
ELECTRONIC S		CO4	Design the Analog & Digital Electronic Circuits for Required Specifications
		CO5	Design and conduct the experiment on clippers ,clampers, amplifiers, 555 timers for the design specifications
		CO6	Design and conduct the experiment to verify the truth table operation of combinational and sequential circuit
		CO 1	Understand mechanical properties of metals, alloys and composites
MATERIAL	21MT33	CO 2	Describe the process of casting, different methods to process composite materials
SCIENCE AND MANUFACTU		CO 3	Determine the mechanical properties of given materials through material testing experiments
RING TECHNOLOG		CO 4	Develop components of different shapes involving conventional machining operations
Y		CO 5	Prepare/ develop a physical model by performing different machining operations
		CO 6	Determine the mechanical properties of given materials and visualize the micro structure of the specimen

		CO 1	Gain the knowledge of properties, and stress-strain relations in linear elastic solid members and fluids
		CO 2	Describe stress-strain equation for axial, bending and torsion loads while addressing problems in engineering
MECHANICS OF SOLID AND FLUIDS -	21MT34	CO 3	Apply the concepts of fluid statics, kinematics and dynamics while addressing problems in engineering and to determine the fluid flow through open and closed channel
		CO 4	Determine the stress & strain for simple stresses, compound stresses, shafts & columns
		CO1	Interpret the Machining and surface finish symbols on the component drawings
MACHINE DRAWING	21MTL35	CO2	Apply limits and tolerances to assemblies and choose appropriate fits for given assemblies
AND GD & T -		CO3	Illustrate various machine components through drawings
		CO4	Create assembly drawings as per the conventions
		CO 1	Understand the functions of different elements of robots
ROBOTICS ECOSYSTEM -	21MT384 - 21MATCS41	CO 2	Apply the knowledge of sensors and end effectors in robotics
ECOSTSTEM -		CO 3	Analyze the use of different types of robots for different applications
		CO1	Apply the concepts of logic for effective computation and relating problems in the Engineering domain
MATHEMATI CAL		CO2	Analyse the concepts of functions and relations to various fields of Engineering
FOUNDATION S FOR COMPUTING, PROBABILIT		CO3	Apply discrete and continuous probability distributions in analysing the probability models arising in the engineering field
Y & STATISTICS		CO4	Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data
STATISTICS		CO5	Construct joint probability distributions and demonstrate the validity of testing the hypothesis
		CO 1	Understand the basic concept of Electric drives and controls
		CO 2	Explain the characteristics of AC and DC Motor drives
ELECTRICAL	21MT42	CO 3	Apply conventional control methods for AC and DC drives
DRIVES AND CONTROLS		CO 4	Apply solid-state speed control methods for AC and DC drives
		CO 5	Conduct experiment to determine control characteristics of DC motors
		CO 6	Conduct experiment to determine control characteristics of AC motors
HYDRAULICS	21MT43	CO 1	Understand different components of pneumatic and

AND			hydraulic circuits
PNEUMATICS		CO 2	Demonstrate working of valves, solenoids, and pumps
		CO 3	Apply concepts of pneumatic and hydraulic to design and develop respective circuits
		CO 4	Design and analyse Hydraulic/pneumatic circuits
		CO 5	Design pneumatic circuits for various industrial applications using experimental pneumatic kits
		CO 6	Create the graphical simulation for pneumatic and hydraulic circuits
MCDOCONT		CO1	Describe the architecture of 8051 Microcontroller, microprocessor and internal memory organization, types of memory architecture, Concept of Addressing modes and Assembly and C instruction set
MICROCONT ROLLER AND APPLICATION	21MT44	CO2	Apply various instruction set of assembly and C language for different software and hardware applications
S -		CO3	Calculate time delays, baud rates and analyze Timer
		CO4	Design the hardware interface between microcontroller and memories of different size, external peripheral devices for real time application
MECHATRON	21MTL46	CO1	Evaluate the performance of the sensors like LVDT, load cell and Thermo couple by Calibrating
ICS LABORATOR		CO2	develop a various data transfer, arithmetic, logical and code conversion applications using Assembly Language
Y -		CO3	Design a interface between 8051 and external peripherals for real time applications
3D-PRINTING	21MT482	CO 1	Understand steps, software and different key elements used in 3D printer
TECHNOLOG Y -		CO 2	Develop a program using open-source software to use 3D printer
		CO 3	Apply the knowledge of 3D printers in building model
		CO 1	Illustrate Kinematics of Machines, theories of failures and stress concentration
THEORY OF		CO 2	Determine the mobility, power loss due in belt drives
MACHINES AND MACHINE DESIGN -	21MT51	CO 3	Calculate the stresses, parameters of machine elements subjected to various loads also make proper assumptions with respect to material, FOS for various machine components
		CO 4	Design machine elements like, gears and other simple machine elements
MICRO AND SMART SYSTEM	21MT52	CO 1	Demonstrate the working methodology of smart materials, Microsystems, electronic circuitry in MEMS devices.

TRANSA			
TECHNOLOG Y		CO 2	Illustrate the process of silicon wafer preparation, thin film deposition techniques, lithography, etching, bulk & surface micromachining involved in MEMS fabrication.
		CO 3	Examine the behavior of piezoresistive & piezoelectric materials required to fabricate pressure sensor & vibration control structures.
		CO 4	Measure the performance of pressure sensor & vibration control structure in real time applications.
		CO 5	Analyze the behavior of smart materials for different parameters to has sensor and an actuator.
		CO 6	Determine the sensitivity, non linearity and offset voltage of raw pressure sensors and compensated pressure sensor.
		CO 1	Understand the need and basics of Industrial Automation,
INDUSTRIAL AUTOMATIO	21MT53	CO 2	Understand knowledge on Automated Manufacturing system
N	2111135	CO 3	Analyze different types of automated manufacturing systems
		CO 4	Design material handling system in Manufacturing system
	21MT54	CO1	Demonstrate the concepts of control systems and its specifications for mathematical modelling
CONTROL THEORY AND VIRTUAL INSTRUMENT		CO2	Understand the structured LabVIEW programming concepts in developing Virtual Instrumentation and use general purpose interface bus and Serial communication Interface
ATION		CO3	Develop the mathematical model for mechanical and electrical systems
		CO4	Analyse various applications on Real time monitoring using DAQ boards
VIRTUAL	21MTL55	CO1	Develop LabVIEW programming which employs simulating and analysing the data for real time automation
INSTRUMENT ATION LAB		CO2	Create different control applications using tools available in LabVIEW
		CO3	Design applications that use plug in DAQ boards and built-in analysis functions to process the data
	21MT582	CO1	Understand the instruction set of 32-bit microcontroller ARM Cortex M3, and the software tool required for programming in Assembly and C language.
EMBEDDED SYSTEMS		CO2	Develop assembly language programs using ARM. Cortex M3 for different applications. Interface externated devices and 1/0 with ARM Cortex M3.
		CO3	Develop C language programs and library functions for embedded system applications.

CONDITION		CO1	Obtain knowledge of reliability, maintenance of system, productive maintenance, fault detection and diagnosis.
MONITORING AND MAINTENAN	21MT61	CO2	Explain failure, failure frequency, maintenance, concepts of reliability and probability, and reliability centered maintenance.
CE MANAGEME		CO3	Apply the techniques of total productive maintenance and reliability centered maintenance.
NT		CO4	Measure and analyze condition of the components to monitor the faults.
		CO1	Demonstrate the concepts of basic programming skills of PLC using logical instructions
		CO2	Apply the architecture process involved in programmable logic controller and basic programming skills of PLC using logical instructions
PROGRAMMA BLE LOGIC CONTROLLE		CO3	Examine the various operation involved in the PLC input/output module and SCADA system
R AND SCADA TECHNOLOG Y	21MT62	CO4	Construct the ladder diagram for PLC using logical instructions, timer and counters, Data Handling instructions and build the SCADA System for Real time industrial process.
1		CO5	Develop the Logical Instructions Involved in development of programmable logic controller for various operations
		CO6	Construct the ladder logic for various operations using PLC and SCADA for Industrial Environment
	21MT63	CO1	To understand the basics of robotics, sensors, Programming and Applications of Robots
INDUSTRIAL ROBOTICS		CO2	To illustrate the different applications of robotics in Industries
		CO3	To analyze simple robot kinematics and dynamics
		CO4	To design general robot cell layouts
		C01	Have knowledge of semiconductors devices, Thyristors, AC voltage controllers, choppers and inverters
POWER ELECTRONIC S	21MT641	CO2	Understand the characteristics and working principles of Thyristors, AC voltage controllers, choppers and inverters
		CO3	Apply control techniques to meet the desired operation of AC voltage regulators, rectifiers and commutation
		CO4	Apply control techniques to meet the desired operation of coppers and Inverters
MECHATDON		CO1	Illustrate various components of Mechatronics systems.
MECHATRON ICS ENGINEERIN	21MT653	CO2	Explain the working principles of transducers and sensors in mechatronics.
G		CO3	Apply the knowledge of electromechanical components and PLC in mechatronics applications.

Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka and Accredited by NBA (AE, BT, CSE, ECE, ME, MT)

		CO4	Outline the design process in mechatronics and Mechatronics integrated issues.
		CO1	Understand the importance and application of robots in virtual environment
ROBOTICS LAB	21MTL66	CO2	Design the robot system for point to point and continuous operation
		CO3	Design the robot program for drilling operation

2018 SCHEME COURSE OUTCOMES

Course Name	Course Code	CO. No.	Course Outcomes
TRANFORM CALCULUS,		C01	Have The Knowledge Of Laplace Transforms, Fourier Series, Fourier Transforms, Z-Transforms, Calculus Of Variations And Numerical Methods.
FOURIER SERIES & NUMERICAL TECHNIQUES	18MAT3 1	CO2	Solve Engineering Problems Using Laplace Transforms, Fourier Series, Fourier Transforms, Numerical Methods And Calculus Of Variation.
TECHNIQUES		CO3	Communicate And Reflect On Applications Of Mathematics As Tool.
		CO1	Have knowledge of -Mechanical behavior of metals, Smart materials, composite materials, Alloys, Heat treatment process & phase diagrams.
MATERIAL SCIENCE AND	18MAT3 2	CO2	understand the mechanism of various Metallurgical process & manufacturing process of composite materials & working of smart sensors
		CO3	application of metallurgical process, production process of composite & working principle of smart sensor for various engineering solutions
	18MT33	CO1	Have knowledge of stress-strain relations in linear elastic members
MECHANICS OF MATERIALS		CO2	Describe stress- strain equation for axial, bending and torsion loads.
		CO3	Determine the stress & strain for simple stresses, compound stresses, beams, shafts & columns
	18MT34	CO1	Demonstrate the concepts of Control systems and its Specifications for mathematical modelling, feedback control and stability analysis in Time and Frequency domains
CONTROL SYSTEMS		CO2	Express and solve system equations in state-variable form (state variable models), Identify open and closed loop control system to Solve Signal Flow graph and reduction of Block diagram
		CO3	Apply root-locus and Routh-Hurwitz stability criterion

			technique to analyse and design control systems
		CO4	Determine the time and frequency-domain responses of first and second-order systems to step and sinusoidal (and to some extent, ramp) inputs Formulate mathematical modelling of physical systems(Mechanical and Electrical System)
		CO1	Have knowledge of Analog & Digital Electronic Circuits.
ANALOG & DIGITAL	101/1725	CO2	Understand the characteristics & operation of Electronic Circuits.
ELECTRONICS	18MT35	CO3	Formulate the relations for Voltage Gain ,Frequency of Various Electronics Circuits.
		CO4	Design the Electronics Systems for Required Specifications
		CO1	Explain the basic organization of a computer system.
COMPUTER ORGANIZATION		CO2	Explain different ways of accessing an input / output device including interrupts
AND	18MT36	CO3	Illustrate the organization of different types of semiconductor and other secondary storage memories.
Michieleren		CO4	Illustrate simple processor organization based on hardwired control and micro programmed control.
		CO1	Understand how to conduct/operate material testing experiments. Demonstrate milling and shaper operation.
MACHINE SHOP	18MTL37	CO2	Perform machining operations on lathe to produce the model. Taper turning calculation and gear setting for thread cutting
AND MATERIAL TESTING LAB		CO3	Determine the mechanical properties of given materials such as Young's modulus, rigidity modulus, Bulks modulus, ultimate strength by conducting tensile, compression, torsion, and bending experiments.
		CO4	Determine hardness and toughness of given material by conducting hardness and impact test
		CO1	Demonstrate the operation of wave shaping networks, amplifiers& clampers.
ANALOG AND	10 10	CO2	Analyze the performance of 555 timer as monostable & a stable multi vibrator.
DIGITAL ELECTRONICS LAB	18MTL38	CO3	Design the oscillator & multi vibrator for desired frequency.
		CO4	Construct the combinational & sequential circuits for real time applications.
		CO1	Describe concept of turbo machines, fluid properties, fluid at statics and motion (kinematics and dynamics).
FLUID MECHANICS AND MACHINES	18MT42	CO2	Measurement of fluid flow through pipe and open channel. Apply momentum/energy equation to fluid flow problems.

		CO3	Determine the properties of fluid and their effect, fluid statics and its application to monometers. Determine the performance of hydraulic turbines & steam turbines.
		CO4	Analyze kinematics and dynamics of fluid flow. Classification of fluid types, fluid flow, turbo machines, and it's compounding. Deduce performance of turbo machines.
		CO1	Describe the architecture of 8051 Microcontroller, microprocessor and internal memory organization, types of memory architecture, Concept of Addressing modes and Assembly and C instruction set.
MICROCONTROLLE R	18MT43	CO2	Apply various instruction set of assembly and C language programming for different software and hardware applications.
		CO3	Calculate time delays, baud rates and analyze Timer. Counter operation and Transmission of data serially for different modes of operation.
		CO4	Design the hardware interface between microcontroller, memories of different sizes and external peripherals.
	18MT44	CO1	Have knowledge of -Mechanical behavior of metals, Smart materials, composite materials, Alloys, Heat treatment process & phase diagrams.
MANUFACTURING TECHNOLOGY		CO2	Understand the mechanism of various Metallurgical process & manufacturing process of composite materials & working of smart sensors,.
		CO3	Application of metallurgical process, production process of composite & working principle of smart sensor for various engineering solutions.
	18MT45	CO1	Have fundamental knowledge of Kinematics and Dynamics of Machines.
		CO2	Understand the geometry and the motion of the parts of a machine and forces that produces this motion.
THEORY OF MACHINES		CO3	Determine the mobility, power loss due to friction in various machine elements, balancing mass and its position, stability of a governor and effect of gyroscopic couple on plane disk, Aircraft, stability of two wheelers and ship.
		CO4	Construction of different types of cam profiles for a given data.
		CO1	Apply knowledge of Instrumentation to measure Strain, Pressure, Force, Displacement, and Level.
INSTRUMENTATION AND	18MT46	CO2	Use their skill set to measure resistance, Capacitance and Inductance using various bridge control circuits.
MEASUREMENTS		CO3	Choose various transducers to measure different physical quantities.
		CO4	Analyze the Static and Dynamic Characteristics and

Affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka and Accredited by NBA (AE, BT, CSE, ECE, ME, MT)

			Various Measurement instruments.
		CO1	Apply principles of fluid mechanics, machines, and pneumatics.
FLUID MECHANICS AND PNEUMATIC LAB	18MTL47	CO2	Determine the coefficient of discharge of flow measuring devices and performance of turbines.
		CO3	Select the type of turbine required with reference to available head of water and discharge.
		CO4	Design pneumatic circuit for speed control single acting, double acting and sequencing operation.
MICROCONTROLLE	18MTL48	CO1	Develop an interface between 8051 and external peripherals for various applications using C and Assembly Programming.
R LABORATORY		CO2	Design microcontroller based circuits for real time applications
		CO3	Develop a microcontroller program for industrial applications.
TECHNOLOGICAL INNOVATION	18MT51	CO1	Understand the fundamental concepts of Management and Entrepreneurship and opportunities in order to setup abusiness
MANAGEMENT AND		CO2	Describe the functions of Managers, Entrepreneurs and their social responsibilities
ENTREPRENEURSHIP		CO3	Understand the components in developing a business plan.
	18MT52	CO1	Have knowledge of theories of failures, stress concentration, shafts, keys, couplings, gears, bearings and springs, Finite element analysis, elements and nodes.
DESIGN AND ANALYSIS OF		CO2	Understand the technique of theories of failure, stress concentration, fatigue strength etc.
MACHINE ELEMENTS		CO3	Calculate the stresses; parameters of machine elements subjected to various loads also make proper assumptions with respect to material, FOS for various machine components.
		CO4	Design machine elements like, gears, power screws, springs and other simple machine elements.
	18MT53	CO1	Understand the structured LabVIEW programming concepts in developing Virtual Instrumentation.
VIRTUAL INSTRUMENTATION		CO2	Build applications employed in various debugging techniques, simulating and analyzing the data and use general purpose interface bus and Serial communication Interface.
		CO3	Create applications that uses plug in DAQ boards and built in analysis functions to process the data.
		CO4	.Design and analyse various applications on Real time monitoring using DAQ boards
HYDRAULICS AND	18MT54	CO1	Have knowledge of hydraulic and pneumatic system and

PNEUMATICS			its components.
		CO2	Understand the working principle of various hydraulic and pneumatic components.
		CO3	Apply working principles of Hydraulic and Pneumatic Systems for various applications.
		CO4	Determine cause for hydraulic and pneumatic system break down and performance of hydraulic pumps, motors.
MICRO & SMART	18MT55	CO1	Have knowledge of Smart Materials, Sensors & Actuators, Microsystems.
SYTEMS TECHNOLOGY		CO2	Understand the Working Methodology of Smart Devices & Systems, Electronic Circuits & Control for MEMS, Methodology of Micro-manufacturing
VIRTUAL	18MTL57	CO1	Develop LabVIEW programming which employs simulating and analyzing the data for real time automation
INSTRUMENTATION LABORATORY		CO2	Engage in designing, implementing, analyzing and demonstrating an application using tools in available in LabVIEW through an open ended experiment.
		CO3	Design applications that uses plug in DAQ boards and built in analysis functions to process the data.
MICRO & SMART SYSTEMS	10N/TL 50	CO1	Understand, Analyze & gain ability to choose Materials for desired applications.
TECHNOLOGY LABORATORY	18MTL58	CO2	Understand, Analyze & gain ability to choose Sensors for desired applications.
	18MT61	CO1	Demonstrate the concepts of basic programming skills of PLC using logical instructions
		CO2	Apply the architecture process involved in programmable logic controller and basic programming skills of PLC using logical instructions
PLC AND SCADA		CO3	Examine the various operation involved in the PLC input/output module and SCADA system
		CO4	Construct the ladder diagram for PLC using logical instructions, timer and counters, Data Handling instructions and Build the SCADA System for Real time industrial process.
		CO1	Have knowledge of power semiconductor devices, thyristors, AC voltage controllers, choppers and inverters.
POWER ELECTRONICS	18MT62	CO2	Understand the characteristics and working principle of thyristors, AC voltage controllers, choppers and inverters.
		CO3	Apply control techniques to meet desired switching objectives.
COMPUTER AIDED MACHINE DRAWING	18MT63	CO1	Sections of pyramids, prisms, cubes, cones and cylinders resting on their bases in 2D

		CO2	Orthographic views of machine parts with and without sectioning in 2D.
		CO3	Sectional views for threads with terminologies of ISO Metric, square and acme, threads in 2D.
		CO4	Hexagonal headed bolt and nut with washer, assemblies in 2D
		CO5	Parallel key, Taper key, and Woodruff Key as per the ISO standards in 2D
		CO6	Sketch split muff, protected type flanged, pin type flexible assemblies from the part drawings with limits ,fits and tolerance given for Plummer block, Screw Jack, Tailstock of lathe, in 2D and 3D
PLC AND SCADA	18MTL66	CO1	Develop the logical instructions involved in Development of programmable logic controller for various operations
LABORATORY		CO2	Construct the Ladder Logic for various operation using PLC and SCADA for industrial Environment.
		CO3	Design the SCADA System for industrial Environment.
POWER ELECTRONICS	18MTL67	CO1	Understand and verify the characteristics of different power electronic devices.
LABORATORY		CO2	Use the power devices to control the operation of electronic systems.
	18MT642	CO1	Have fundamental knowledge of Rapid Prototyping process, Selective Laser Sintering, Fusion Deposition Modelling, Solid Ground Curing, 3D Printers, Rapid Tooling, Software and Errors.
RAPID PROTOTYPING		CO2	Understand the working Principles of Selective Laser Sintering, Fusion Deposition Modelling Solid Ground Curing, 3D Printers,.
		CO3	Know the applications of Selective Laser Sintering, Fusion Deposition Modelling, Solid Ground Curing, 3D Printers, also software tools like Magic, MMIC.
SATELLITE	18MT644	CO1	Have Knowledge of various kinds of Satellites, Satellite Subsystems & Orbits, Trajectory.
COMMUNICATION		CO2	Understand the Operation of Satellites in space for various applications
		CO1	Have fundamental knowledge of CIM
COMPUTER INTEGRATED MANUFACTURING	18MT645	CO2	Understand the concepts of high volume production, flow line analysis and line balancing, automated, assembly system, computerized manufacturing planning & CNC centers.
		CO3	Apply CIM technology for providing manufacturing solutions
ROBOTICS & AUTOMATION	18MT651	CO1	Have the knowledge of Joints, Links, Sensors, Control units, Actuators. and elements of Automation

		CO2	Describe motions and control system of Robots.
INDUSTRIAL ROBOTICS	18MT71	CO1	Have knowledge of Robotics, automation, robotics motion, sensors and control, machine vision, robotic programming and roles of robots in industry.
		CO2	Understand the working methodology of robotics and automation, motion and control, machine vision and programming, application of robots in industry.
		CO3	Write the program for robot for various applications.
THERMAL ENGINEERING	18MT72	CO1	Understand the concepts of system, properties, energy interaction, laws of thermodynamics, and heat transfer and boundary conditions.
		CO2	Apply laws of thermodynamics and laws of heat transfe to engineering system. Define the thermodynamic process and cycle. Determine the energy interaction.
		CO3	Develop heat conduction and temperature distribution equation and describe thermal resistance concept Determine the rate of heat transfer and temperature a any point in the heat transfer domain.
		CO4	Dimensional analysis of heat transfer and use of dimensional number. Study the effect of contact resistance and addition of insulation.
	18MTL76 -	CO1	Analyse the design parameters of Robot for Industria applications on Robo studio.
ROBOTICS		CO2	Develop Robotics Model & workbench prototype for required specifications on Robo studio.
LABORATORY		CO3	Develop & Implement the programs on Industrial Robo for various Real time applications.
		CO4	Evaluate the performance of industrial robot for variou application programs.
	18MTL77	CO1	Perform experiments to determine the therma conductivity of a metal rod.
HEAT TRANSFER LABORATORY		CO2	Conduct experiments to determine convective heat transfer coefficient for free and forced convection and correlate with theoretical values.
		CO3	Estimate the effective thermal resistance in composit slabs and efficiency in pin-fin
		CO4	Determine surface emissivity of a test plate
REAL TIME SYSTEMS	18MT733	CO1	Explain the fundamentals of Real time systems and it classifications.
		CO2	Understand the concepts of computer control and th suitable computer hardware requirements for real-tim applications.
		CO3	Describe the operating system concepts and technique required for real time systems.
		CO4	Develop the software algorithms using suitabl

			languages to meet Real time applications.
		CO5	Apply suitable methodologies to design and develop Real-Time Systems.
ARTIFICIAL INTELLIGENCE	18MT743	CO1	Have Knowledge of Artificial Intelligence, Production Rules, Search Algorithms, Expert System & its architectures, Machine Learning.
INTELLIGENCE		CO2	Understand the working methodology of Search Algorithms, Expert System & Machine Learning.
	18MT744	CO1	Have knowledge of different images, enhancement and restoration.
DIGITAL IMAGE PROCESSING		CO2	Understand how images are formed, sampled, quantized and represented digitally.
		CO3	Process the images by applying different operations and transformation.
		CO1	Discuss about modeling of Mechatronics System .
MECHATRONICS	18MT752	CO2	Explain the actuating devices and signals involved in Mechatronics.
SYSTEM DSEIGN		CO3	Select the sensor and Actuator for a Mechatronics application.
		CO4	Convert the data in real time interfacing.
		CO1	Understanding of Engine Parameters and a critical awareness of current problems within the automotive electronics domain using Various Measurement Technology.
AUTOMOTIVE ELECTRONICS AND		CO2	Apply the fundamental Concepts of automotive electronics on various Engine parts, Sensor, Actuator, Communication and Measurement System.
HYBRID VEHICLES		CO3	Determine the extent and nature of electronic circuitry in automotive systems including monitoring and control circuits for engines, transmissions, brakes, steering, suspension
		CO4	Analyze climate control, instrumentation and radios and accessories involved in Automotive Industry.
	18MT822	CO1	Able to determine the performance of amplitude modulation schemes in time and frequency domains and sampling process.
COMMUNICATION SYSTEM		CO2	Able to characterize the performance of modulation and generation and detection of modulated analog signals.
		CO3	Able to Characterize analog signals in time domain as random processes and in frequency domain using Fourier transforms.
		CO4	Able to Determine the performance of different coding techniques for different modulation types and multiplexers

		CO5	Able to Understand the characteristics of communication systems, pulse amplitude modulation, pulse code modulation systems, digital multiplexers, spread spectrum modulation and its applications.
	18MT823	CO1	Have knowledge of State model, Linear and Non Linear Control System, Controllability and Observe viability.
DIGITAL CONTROL SYSTEM		CO2	Understanding the concepts State model, Linear and Non Linear Control System, Controllability and Observe ability used in Digital Control System.
		CO3	Determine the extent and nature of Lead Lag Circuitry by Plot.